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Abstract. We study zero temperature properties of a system of two coupled quantum spin
chains subject to fields explicitly breaking time reversal symmetry and parity. A suitable choice
of the strength of these fields gives a model soluble by Bethe ansatz methods which allows
us to determine the complete magnetic phase diagram of the system and the asymptotics of
correlation functions from the finite size spectrum. The chiral properties of the system for both
the integrable and the nonintegrable case are studied using numerical techniques.

1. Introduction

The idea of a chiral spin liquid state spontaneously breaking parity (P ) and time reversal
(T ) invariance has attracted considerable interest recently. It was first proposed as a
possible ground state for the two-dimensionalS = 1

2 Heisenberg model on a square lattice
frustrated with a sufficiently strong antiferromagnetic next-nearest neighbour interaction [1].
Subsequent studies of this model have found an enhancement of a chiral order parameter, a
comparison with other possible states however suggests that the chiral spin state is unstable
[2]. Different lattices, in particular the triangular and Kagomé one, have also been studied,
however no firm evidence of a chiral spin state has been found yet. Here the frustration is
a consequence of the lattice geometry.

To characterize a chiral phase several ‘order parameters’ have been introduced. For
lattices built from triangular plaquettes the vector chirality [3]

X = S1× S2+ S2× S3+ S3× S1 (1.1)

with Si being the three spins on the corners of a triangular cell has been discussed. While
a spontaneous symmetry breaking inX appears to be unlikely in an isotropic Heisenberg
system its properties have been studied in stacked triangular antiferromagnets withXXZ-
type anisotropy [4, 5] which are realized in the ABX3-type compounds such as CsCuCl3

(see articles in [6]).
A rotationally invariant operator which has a nonzero expectation value in a phase with

brokenP andT symmetry is defined through [1]

χ̂〈123〉 = S1 · (S2× S3). (1.2)

Finally, a topological ‘Cherns’ number measuring the dependence of a quantum state on
a twist in the boundary conditions has recently been introduced by Haldane and Arovas
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Figure 1. Lattice on which the spin Hamiltonian (1.3) is defined. The two-spin exchange
coupling isJ1 and J2 on full and broken lines, respectively. The three-spin exchange∝ χ1,2

couples the spins on the corners of each triangle.

[7] and used to characterize the ground state of a Heisenberg model on a hexagonal lattice
subject toPT breaking fields. The actual computation of the Cherns number, however,
is restricted to rather small systems thus limiting its use in studies of a phase diagram at
present.

While the existence of a phase with spontaneous broken chirality in a frustrated two-
dimensional Heisenberg model has not been established yet (a possible candidate may be
the Kagoḿe lattice [8]) the experimental studies of ABX3 compounds indicate that the
frustration leads to a rich phase diagram if a magnetic field is applied [4, 9, 10].

Lacking a model with spontaneous brokenPT -symmetry it is useful to consider models
containing terms breaking these symmetriesexplicitly. Studies of such systems allow us to
gain a better understanding of the properties of the chiral spin liquid state and means for its
characterization. In this paper we analyse a system of two spin-1

2 Heisenberg chains coupled
by exchange terms on diagonal bonds as shown in figure 1 described by the Hamiltonian

H0 =
2N∑
n=1

{J1Sn · Sn+1+ J2Sn · Sn+2} (1.3)

with periodic boundary conditionsS2N+k = Sk and even and odd indices labelling spins on
the two subchains respectively. ForJ2 = 0 this is just the Bethe ansatz soluble Heisenberg
chain [11]. As long asJ2 6 J2c ≈ 0.25J1 the model continues to have gapless excitations
above a translationally invariant ground state just as the single chain [12]. Increasing the
frustrating next-nearest neighbour interaction beyondJ2c the system has two degenerate
dimerized ground states leading to the Majumdar–Ghosh (MG) model with a simple dimer
configuration for its ground states atJ2 = 1

2J1 [13].
To force the system into a chiral spin state we add terms breakingPT -symmetry

explicitly

Hχ = 1
2

N∑
n=1

{χ1S2n−1 · (S2n × S2n+1)− χ2S2n · (S2n+1× S2n+2)}. (1.4)

Such multispin exchange terms may in fact be relevant for the description of certain
realizations of the two-dimensional Heisenberg model such as3He layers on a graphite
substrate [14]. Note, that the invariance under translations by one lattice site (n→ n+ 1)
is destroyed by these terms unlessχ1 = −χ2. For the full Hamiltonian including the chiral
terms one has additional integrable models: for a ‘staggered’ chiral fieldχ1 = −χ2 the
operatorHχ is one of the hierarchy of integrals of motion of the Heisenberg chain, thus
commutes withH0(J2 = 0). The consequences of the competition between these operators
have been studied in [15]. Choosing the parameters in

H = H0+Hχ (1.5)
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as

J1 = 2(1− κ) J2 = κ χ1 = χ2 = 2
√
κ(1− κ) (1.6)

one obtains a family of integrable models of generalized spin ladders introduced recently
[16–18]. By varying the free parameterκ from 0 to 1 the system evolves from a single
Heisenberg chain to a pair of decoupled ones, changing the sign ofκ reverses the sign of
the chiral field, but does not affect most other properties of the system.

Here we investigate the properties of the ground state and excitations of this model. In
the following section the ground-state energy and spectrum of the low-lying excitations of
the integrable model (1.6) are computed exactly. As in the Heisenberg chain the excitations
over the antiferromagnetic (singlet) ground state are found to be spinons coming in pairs.
For the characterization of the chiral properties we note that due to its quasi-one-dimensional
character it is not possible to define an analogue of the topological Cherns number for this
system. In the following we choose the expectation value of a uniform extension of the
chirality (1.2) as a measure of the chirality

χ̂ = 1

N

N∑
n=1

{S2n−1 · (S2n × S2n+1)− S2n · (S2n+1× S2n+2)}. (1.7)

Unfortunately, expectation values of operators not commuting with the Hamiltonian such as
χ̂ are not easily accessible within the framework of the Bethe ansatz. Our results regarding
〈χ̂〉 are obtained from numerical diagonalization of finite clusters. In section 3 we study the
phase diagram of the integrable model subject to a uniform external magnetic fieldh ‖ ẑ. A
characterization of the phases based on counting the number of gapless excitations supported
by the system is possible from the Bethe ansatz analysis. We identify three different phases
in theκ–h plane: for sufficiently largeh > hc2 the system shows saturated ferromagnetism.
For 1

4 < κ < 1 a phase with low-lying excitations at four different wavenumbers±k1,2

is found for magnetic fieldshc1 < h < hc2 (a similar phase diagram has recently been
established [19] in an integrable chain of alternating spins1

2 and 1 [20]). To characterize
these phases we can compute the magnetization again from the Bethe ansatz while we have
to rely on numerical results from finite systems for the chirality. In the final section we
summarize our findings and comment on the properties of systems where the parameters
χ1,2 are tuned away from the integrable point.

2. Ground state and excitations of the integrable model

As mentioned above, choosing the exchange constants for the Hamiltonian (1.5) as in (1.6)
gives a system which is integrable by Bethe ansatz methods. Starting from the ferromagnetic
state with all 2N spins pointing up, one can reduce the solution of the Schrödinger equation
in the sector withM overturned spins to a system of algebraic equations(
λj + κ̃

2 + i
2

λj + κ̃
2 − i

2

)N (
λj − κ̃

2 + i
2

λj − κ̃
2 − i

2

)N
=

M∏
j 6=k

λj − λk + i

λj − λk − i
κ̃ =

√
κ

1− κ (2.1)

for the M complex rapiditiesλj . Each solution of these Bethe ansatz equations (2.1)
corresponds to an eigenstate ofH with spin S = N −M = Sz. Up to an overall constant
the corresponding eigenvalues are given by

E({λj }) =
M∑
j=1

(
ε̃0

(
λj + κ̃

2

)
+ ε̃0

(
λj − κ̃

2

))
+Mh ε̃0(λj ) = −1

2

1

λ2
j + 1

4

. (2.2)
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Here we have used the fact that we are constructing eigenstates for fixedSz, to include the
effect of an external magnetic field in the HamiltonianH→ H− hSz.

A generic solution{λj } of (2.1) is organized into groups of uniformly spaced complex
rapidities, so-calledstrings

λ
(m)
j = x + iµj µj = −m+ 1

2
,−m+ 3

2
, . . . ,

m− 1

2
. (2.3)

In the thermodynamic limit, the ground state is made up of realλ’s only (1-strings). Their
densityρ(λ) is given in terms of a linear integral equation

ρ(λ)+
∫ 3

−3
dµK(λ− µ)ρ(µ) = 1

2π

(
1

(λ+ κ̃
2)

2+ 1
4

+ 1

(λ− κ̃
2)

2+ 1
4

)
. (2.4)

The kernel of this integral equation isK(λ) = 1
2π

2
λ2+1. The dependence on the magnetic

field is incorporated in the value of the integration boundaries3 which are to be chosen
such that the total density is

∫ 3
−3 dλ ρ(λ) = (M/N). For a vanishing external magnetic

field h = 0 the ground state can be shown to be a singlet (M = N ) and the rapidities fill
the entire real axis resulting in3 = ∞ in (2.4). Hence,ρ can be computed by Fourier
transform, resulting in

ρ(λ) = ρ̃
(
λ+ κ̃

2

)
+ ρ̃

(
λ− κ̃

2

)
with ρ̃(λ) = 1

2 cosh(πλ)
. (2.5)

From (2.2) the ground-state energyE0 per spin is given by [18]

E0

2N
= 1

2

∫ ∞
−∞

dλ ρ(λ)ε0(λ) =
∫ ∞
−∞

dλ

(
ρ̃

(
λ+ κ̃

2

)
ε̃0(λ)+ ρ̃

(
λ− κ̃

2

)
ε̃0(λ)

)
= − ln 2− 1

4

(
9

(
1− i

2
κ̃

)
−9

(
1

2
− i

2
κ̃

)
+ 9

(
1+ i

2
κ̃

)
−9

(
1

2
+ i

2
κ̃

))
. (2.6)

The term containing digamma functions9(x) increases from− ln 2 to 0 asκ varies between
0 and 1.

Low-lying excitations of the system are parametrized by holes in the distribution of real
{λj }. The dispersion of thesespinonsis determined by the integral equation for thedressed
energies:

ε(λ)+
∫
ε(λ)<0

dµK(λ− µ)ε(µ) = h− 1

2

(
1

(λ+ κ̃
2)

2+ 1
4

+ 1

(λ− κ̃
2)

2+ 1
4

)
. (2.7)

In this grand canonical approach the ground state is characterized as the one in which all
states with negative dressed energyε(λ) are filled. For vanishing or sufficiently small (see
below) magnetic fields this condition is related to that used in (2.4) throughε(±3) = 0.
Again, we can solve (2.7) by the Fourier transform forh = 0, giving

ε(λ) = ε̃
(
λ+ κ̃

2

)
+ ε̃

(
λ− κ̃

2

)
ε̃(λ) = π

2 cosh(πλ)

k(λ) = k̃
(
λ+ κ̃

2

)
+ k̃

(
λ− κ̃

2

)
k̃(λ) = arctan(sinh(πλ))− π

2
.

(2.8)

Eliminatingλ from these equations one obtains the spinon dispersionε(k) which is shown
for several values ofκ in figure 2.
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0 2π
k

 

ε

κ=0
κ=0.25
κ=0.75

Figure 2. Spinon dispersion of the integrable model (1.6) for several values ofκ.

Comparing these results with the known solution of the usualS = 1
2 XXX Heisenberg

chain [21] we find that they coincide in the limitsκ → 0, 1 as is expected from the
Hamiltonian. Zero temperature quantities such as densities of rapidities or their dressed
energies are simply superpositions of the corresponding quantities for theXXX chain with
argument shifted bỹκ (see (2.4), (2.7)). On the basis of the properties of the low-lying
excitations this comparison can be extended to the critical properties of the system: For zero
h the continuum limit of the system can be identified as a conformal field theory (CFT) with
central chargec = 1 for any 06 κ < 1. As for theXXX chain we expect this situation to
be described by a level-1 SU(2) Wess–Zumino–Witten model. Forκ = 1 another massless
mode appears leading to low-energy properties corresponding to twoc = 1 models (see
also section 3 below).

Finally, we shall study the effect of the symmetry breaking termsHχ in the integrable
Hamiltonian. It is instructive to start with the exact solution of a system of four spins (see
also [1]). The Hamiltonian is given by (1.3) withN = 2 and the couplings are

J1 = 1 J2 χ1 = χ2 =: κ 06 κ 6 1. (2.9)

From the exact solution we know that the ground state of the integrable model is always a
singlet. The same holds for the model given by (2.9). Hence, it is sufficient to diagonalize
the Hamiltonian in the two-dimensional singlet subspace. Depending onJ2 there are two
distinct cases.

(1) J2 = 1
2. At the MG point the singlets are degenerate for vanishing chiral field

whereas for finiteκ the operatorχ̂ (1.7) lifts this degeneracy. One also observes that the
Hamiltonian simplifies toH = S2+ κχ̂ (up to a constant) and [S2, χ̂ ] = 0. Therefore the
chirality χ̂ can be diagonalized in the singlet subspace, yielding aκ-independent chirality
which is found to be one of its eigenvalues〈χ̂〉 = ± 1

2

√
3.

(2) J2 6= 1
2. Tuning J2 away from 1

2 the ground state of theκ = 0-system is unique.
At this point the Hamiltonian isP - andT -symmetric leading to a vanishing chirality in the
ground state. Switching on the chiral field the two singlet eigenstates of the Hamiltonian
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0.0 0.5 1.0
κ

0.0

0.2

0.4

χ

0.4 0.6
0.4

0.5

Figure 3. Chirality of the integrable model (1.6). The system sizes are 2N =
8, 12, 16, 20, 24,∞ from top to bottom.

have nonzero expectation values〈χ̂〉:

〈χ̂〉 = ±3

2

κ√
3κ2+ 2(2J2− 1)2

. (2.10)

The ‘chiral susceptibility’∂〈χ̂〉/∂κ diverges forκ = 0 at the MG point. Forκ � 1 the
chirality approaches its eigenvalue1

2

√
3.

For larger systems no exact results on the chirality can be obtained (as mentioned in
the introduction it is not possible to compute this expectation value directly from the Bethe
ansatz solution). For small systems (up to 24 spins) we have used a Lanzcos algorithm to
compute some low-lying states numerically. In figure 3 we present our results on ground-
state chirality from these data:〈χ̂〉 vanishes forκ → 0, 1 as is expected from the single
chain Hamiltonian in these limits. For intermediate values ofκ we find that the finite size
corrections to the chirality are very small, so that the properties of the infinite system can
easily be read off from the numerical data. We find that the maximum chirality is obtained
at κ ≈ 0.58 with about two thirds of the largest possible value

√
3/2.

3. Magnetic phase diagram of the integrable model

While the zero field properties of the model (1.5) are closely related to those of the single
XXX Heisenberg chain, the addition of a magnetic field gives rise to an interesting phase
diagram (see figure 4): For small values ofκ we find that the magnetic field first breaks
the SU(2) symmetry giving ac = 1 Gaussian CFT with anomalous dimensions depending
on the magnetic field. Increasing the magnetic fieldh beyond a value ofhc1(κ) makes two
additional ‘Fermi points’ with gapless excitations arise, leading to a low-energy spectrum
as described by twoc = 1 Gaussian CFTs. Finally, for magnetic fieldh > hc2 the ground
state of the system saturates ferromagnetically.

To calculate the corresponding phase boundaries as a function ofκ and the expectation
values of the magnetizationσ = 〈Sz〉/(2N) as a function of the magnetic field we have to
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0.0 0.5 1.0
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1.0

2.0
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5.0

h

κ
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h

h

crit
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Figure 4. Magnetic phase diagram of the integrable system. Belowhc1 the system has central
chargec = 1, for hc1 < h < hc2 the model is a realization of twoc = 1 models, and for
h > hc2 the system saturates in a fully polarized (ferromagnetic) state.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
h

0.0

0.5

1.0

σ

κ = 0.25
κ = 0.5
κ = 0.75

Figure 5. Magnetization of the integrable model versus magnetic field for three values ofκ.

solve the integral equation (2.7). The numerical results for the magnetization are given in
figure 5.

Analytical results can be obtained near the critical fieldhc2 which is determined from
the condition thatε(λ) > 0 for all values ofλ. For fieldsh / hc2 the integral equation can
be solved by iteration which allows us to study the nature of low-lying excitations and the
dependence of the magnetization onh. Here one has to distinguish three different cases.

(i) For 0 6 κ < 1
4 the minimum of the bare dispersion given by the driving terms in
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(a) (b)

Figure 6. Filling of the Fermi sea in the presence of a magnetic field. (a) κ < 1
4 and

0< h < hc2. (b) κ > 1
4 andh = hc1, the position of the ‘kink’ in figure 5.

(2.7) is atλ = 0 (see figure 6(a)). The dressed energies are nonnegative for magnetic fields

h > hc2 = 4(1− κ). (3.1)

In this region the magnetization reaches its maximum according to a square root law

σ = 1− 2

π

√
1

hc2− 3

√
hc2− h. (3.2)

The system has massless excitations near the pseudo Fermi pointsε(±3) = 0. Letting
h → 0 one finds that there is no additional phase transition, hence we can identify these
excitations with the spinons forming the excitation spectrum at zero magnetic field. Standard
techniques [22] can be used to compute the spectra of finite size systems from the Bethe
ansatz equations (2.1). The low-lying energies compared with the ground-state energy of
the infinite system are (L ≡ 2N )

1E = − π
6L
v + 2π

L
v(1+ +1−) (3.3)

wherev is the velocity of the massless magnons and the conformal dimensions of primary
operators are

1± = 1

2

{
1

2ξ
1M ± ξ1D

}2

. (3.4)

1M is an integer denoting the change inSz induced by the operator,1D is an integer
or half integer proportional to the momentum of the excited state (due to backscattering).
The dressed chargeξ = ξ(3) is given in terms of the linear integral equationξ(λ) +∫ 3
−3 dµK(λ − µ)ξ(µ) = 1. Depending on the external magnetic field it varies between

1/
√

2 for h = 0 and 1 forh → hc2. The spectrum (3.3) allows us to identify the central
chargec = 1 and the operator content of a Gaussian CFT with U(1) symmetry as mentioned
above.

(ii) κ = 1
4: proceeding as in (i), one findshc2 = 3. Unlike for smallerκ, the dependence

of the bare dispersion on the spectral parameter near the minimum is∝ λ4. As a consequence
of this quartic magnon dispersion one finds a different scaling of the magnetization with
the magnetic field nearhc2 at this special value ofκ:

σ = 1− 4

π
(3(hc2− h)) 1

4 . (3.5)

The classification of the low-lying excitations as well as the interpretation concerning the
conformal properties of the system coincide with those of case (i) above.
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(iii) In the region 1
4 < κ 6 1 two degenerate minima of the bare dispersion exist at

nonzero valuesλ = ±3(0) of the spectral parameter (figure 6(b)). This does not affect the
dependence of the magnetization on the magnetic field for fields near the critical value

hc2 = 1+ κ− 1
2 . (3.6)

As for κ < 1
4 we have a square root dependence ofσ on h / hc2
σ = 1− constant

√
hc2− h (3.7)

which is a κ-dependent constant. The spectrum of low-energy excitations, however, is
different in this regime. Forh < hc2 there are two filled ‘Fermi seas’ [−32,−31] and
[31,32] of quasiparticles near±3(0) giving rise to two branches of massless spin excitations
with different magnon velocities in the system. This situation is very similar to the one
observed in the system withXY -type anisotropy and large staggered chiral field [15]: the
expressions for the leading finite size corrections to the energies are (for the generalization
of [22] to the case of several branches of excitations see also [23, 24])

1E = − π
6L
(v1+ v2)+ 2π

L
(v1(1

+
1 +1−1 )+ v2(1

+
2 +1−2 )). (3.8)

Herevi are the velocities of the excitations (linearized near the Fermi points±3i) and the
primary conformal dimensions1±i are found to be

1±i =
1

2

{
ξ+i 1M

± − ξ−i 1M∓
2((ξ+i )2− (ξ−i )2)

∓ (ξ+i 1D± + ξ−i 1D∓)
}2

. (3.9)

The numbers1M± are the difference between the number of quasiparticles in the Fermi
seas in the ground state and excited state, respectively.1D± counts the backscattering
events in the excited state (giving rise to excitations with momenta being multiples of twice
the Fermi momenta of the quasiparticles). All conformal dimensions can be parametrized
by the four numbersξ±i = ξ±(3i) which are given in terms of the integral equations

ξ+(λ) = 1−
∫ 32

31

K(λ− µ)ξ+(µ)−
∫ 32

31

K(λ+ µ)ξ−(µ)

ξ−(λ) = −
∫ 32

31

K(λ+ µ)ξ+(µ)−
∫ 32

31

K(λ− µ)ξ−(µ).
(3.10)

Equation (3.8) is the generic form of a low-energy spectrum in a system with two different
branches of massless excitations. A finite size spectrum of the form (3.8) arises in many one-
dimensional systems, for example integrable spin chains [15, 23, 25] and various models of
correlated electrons [24, 26] where the two critical degrees of freedom are holon and spinon
excitations. In the present model it can be interpreted as a realization of twoc = 1 Gaussian
models.

Decreasing the magnetic field further the universality class changes again ath = hc1
where31 = 0 andv1 vanishes leading to a divergence of the low temperature specific heat
C ≈ (πT /6)(v−1

1 +v−1
2 ). At this point one of the massless modes has a quadratic dispersion

and the system undergoes a Pokrovsky–Talapov transition into the U(1) Gaussian phase with
central chargec = 1 that was already identified forκ < 1

4 above. The value ofhc1 has to
be determined by numerical solution of the integral equations (2.7). The complete magnetic
phase diagram is shown in figure 4.

This phase transition leads to a discontinuous change in the spectrum of critical
exponents determining the long distance asymptotics of the correlation functions of the
system. As an example we consider the spin correlatorCzz(x) = 〈SzxSz0〉. The massless
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α

Figure 7. Critical exponentα of 〈SzxSz0〉 as a function ofκ for magnetic fieldh → hc1 from
below (broken curve) and above (full curve).

magnon excitations discussed above lead to algebraically decaying correlation functions,
from (3.4) and (3.9) we find that the leading term inCzz beyond the constants is of the
form (1/x)α cos(2k0x) wherek0 is a magnetic field-dependent wavenumber and the exponent
α is given by

α =


2ξ2 for 06 h < hc1∑
i

((ξ+i )
2+ (ξ−i )2) for hc1 < h < hc2. (3.11)

For h → 0 (hc2) one obtainsα = 1 (2) from the appropriate expression as in region (i).
In figure 7 the values of the exponentα ashc1 is approached from above and below are
presented as a function ofκ. For 1

4 < κ < 1 one observes a discontinuous increase of
α at the transitionh = hc1. Such a change of the asymptotic behaviour ofCzz can be
observed, for example in the temperature dependence of NMR longitudinal relaxation rate,
1/T1 ∝ T α−1.

Finally, we want to note that these pronounced features in theh-dependence of the
magnetization and the critical behaviour of the system are reflected in the chirality properties
of the system. Numerical computation of the chirality in the ground state as a function of
the applied magnetic field for systems with up to 24 spins shows a smooth dependence of
〈χ̂〉 on the magnetization. At the same time the fluctuations〈(1χ̂)2〉 scale like 1/N for
h < hc1 and are enhanced as the critical field is approached from below. Abovehc1 they
become smaller vanishing for the ferromagnetic state (see figure 8).

4. Summary and conclusion

We have presented results on the ground-state properties and the magnetic phase diagram
of a quasi-one-dimensional spin system with explicitlyP and T breaking terms in the
Hamiltonian. These terms generate chiral order in the system which in turn is found to lead
to an interesting behaviour of the system when exposed to an external magnetic field.
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n = 24

Figure 8. Chiral fluctuations〈(1χ̂)2〉 in the ground state for given magnetizationσ of the
integrable system withκ = 1

2 and n spins. The broken line indicates the value of the
magnetization at the critical magnetic fieldhc1 for the infinite system.

0.0 0.1 0.2
κ

0.0

0.1

0.2

∆

Figure 9. Spin gap1 for J1 = 2J2 = 1 as a function of the strength of the chiral field. The
curve is a guide for the eyes and is given by a Gaussian.

The question remains as to what extent the observed behaviour is determined by the
integrability of the system (1.5), (1.6). While a complete analyisis of this question is
difficult, we have diagonalized small systems to give a partial answer.

Choosing the parameters as in (2.9) withJ2 = 1
2 the system interpolates between two

soluble points. Forκ = 0 the model reduces to the MG model,κ = 1
2 is the Bethe ansatz

soluble point. While the former one has a gap for spin excitations, the latter supports
massless magnons. The vanishing of this spin gap as a function ofκ has been studied using
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Lanzcos procedures and finite size interpolation. At the MG point the gap above the two
degenerate valence bond singlets is known very accurately, being1MG = 0.236 with finite
size corrections scaling as12 = 12

MG(1+ constant/N2) [27]. At κ = 1
2 the gap vanishes

as1 ∼ constant/N according to (3.4). It is difficult to find an interpolating expression
between these limiting cases that leads to uniformly good fits of the numerical data. Still
one can conclude that inclusion of the chiral term results in a rapidly vanishing gap, as can
be seen in figure 9. Forκ ' 0.15 the numerical data do not allow us to decide whether
there is a finite gap or not. The ground-state expectation value of the chirality shows a
monotonic increase withκ, with 〈χ̂〉 ≈ 0.58 atκ = 1.

Further studies are necessary for a better understanding of the intermediate phase
transition in the integrable model ath = hc1. At h = 0 this transition occurs at the point
κ = 1, corresponding to a decoupling of the two sublattices. Whether such a ‘dimensional
reduction’ is the origin of the phase transition atκ < 1 and whether this feature can be used
to describe the experimentally observed magnetic phases in the frustrated ABX3 compounds
remains to be investigated in the context of systems with a larger number of coupled chains
and eventually truly two-dimensional lattices.
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